Website is intended for physicians
Search:
Всего найдено: 4

 

Abstract:

Introduction: more than 10 million ischemic strokes are recorded in the world every year - a disease, the mechanism of development of which is associated with impaired blood flow to the brain tissues, mainly due to embolism in intracranial arteries. One of treatment methods of ischemic stroke within the «therapeutic window», in the absence of contraindications, is systemic thrombolytic therapy. Thrombolytic therapy has a number of limitations and contraindications, including ongoing or occurring bleeding of various localization within a period of up to 6 months.

Aim: was to evaluate the possibility of performing and the effectiveness of «off-label» simultaneous selective thrombolytic therapy and uterine arteries embolization in a patient with acute ischemic stroke with multiple distal lesions of middle cerebral artery branches against the background of ongoing uterine bleeding.

Case report: patient S., 42 years old, was hospitalized to the pulmonary department for bronchial asthma treatment with the aim of preoperative preparation before extirpation of the uterus, against the background of menometrorrhagia. At one of days of hospitalization, patient suffered from acute dysarthria, right-sided hemiparesis. When performing multislice computed tomography and angiography, multiple occlusions were revealed in the distal segments (M3-M4) of the left middle cerebral artery. The patient underwent simultaneous selective thrombolytic therapy of the left middle cerebral artery and uterine artery embolization.

Results: in the next few hours of the postoperative period, the patient experienced regression of neurological deficit: symptoms of dysarthria were arrested, almost complete restoration of motor activity in the right extremities, residual slight asymmetry of the face; bleeding from uterine stopped.

The patient was discharged on the 16th day with a slight neurological deficit. The follow-up period is 18 months. Neurological status with minor deficits: slight asymmetry of facial muscles; the strength of muscles of right limbs is reduced to 4-4,5 points. Ultrasound: a significant decrease in the size of the uterus and myomatous nodes. Menstrual cycle is restored.

Conclusions: a wide range of angiographic instruments and skills of endovascular surgeons made it possible to perform «off-label» simultaneous intervention in a patient with ischemic stroke and multiple distal lesions of branches of the middle cerebral artery against the background of ongoing uterine bleeding and giant myoma. The use of methods of endovascular hemostasis makes it possible to stop bleeding by overcoming contraindications to thrombolytic therapy. The use of thrombolytic therapy within the «therapeutic window» allows regression of neurological deficits in patients with multiple distal cerebral artery lesions.

  

References 

1.     GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(5): 439-458.

https://doi.org/10.1016/S1474-4422(19)30034-1

2.     Клинические рекомендации по ведению больных с ишемическим инсультом и транзиторными ишемическими атаками. Москва; 2017: 92.

Clinical guidelines for the management of patients with ischemic stroke and transient ischemic attacks. Moscow; 2017: 92 [In Russ].

3.     Клинические рекомендации по проведению тромболитической терапии при ишемическом инсульте. Москва; 2015: 34.

Clinical guidelines for thrombolytic therapy in ischemic stroke. Moscow; 2015: 34 [In Russ].

4.     Chiasakul T, Bauer KA. Thrombolytic therapy in acute venous thromboembolism. Hematology Am Soc Hematol Educ Program. 2020; 1: 612-618.

5.     Yuan K, Zhang JL, Yan JY, et al. Uterine Artery Embolization with Small-Sized Particles for the Treatment of Symptomatic Adenomyosis: A 42-Month Clinical Follow-Up. Int J Gen Med. 2021; 14: 3575-3581.

6.     Клинические рекомендации: миома матки. Москва; 2020: 48.

Clinical guidelines: uterine fibroids. Moscow; 2020: 48 [In Russ].

 

Abstract:

Introduction: up to the present day, there were no published multicenter randomized researches, that could compare combined concept of thrombectomy, including different methods of stent-retrievers traction with elements of aspiration and thrombolysis. There is no data on the effect of embolic complications after extraction of thrombus from cerebral arteries on outcomes of treatment.

Aim: was to increase the effectiveness of treatment of patients with ischemic stroke basing on a comparison of results of various methods of endovascular thrombectomy from cerebral vessels and intravenous thrombolysis, and on the base of assessment of effect of distal embolism on treatment outcomes in acute period of ischemic stroke.

Materials and methods: we carried out statistical analysis of results of different methods of thrombectomy in 75 patients and intravenous thrombolysis in 75 patients in acute phase of ischemic stroke. Effect of embolic complications after thrombectomy on outcomes of treatment of ischemic stroke was determined.

Results: groups of patients were comparable in age, neurological deficit, sex, localization and stroke subtype. The first group is burdened by the proportion of documented cerebral artery occlusion, diabetes mellitus and ischemic stroke in anamnesis. Differences in deaths and disability rates were not reliable. Thrombectomy demonstrated neurological deficit regression at all evaluation intervals, as well as the superiority of 2 times at achievement of functionally independent outcome in comparison with intravenous thrombolysis group.

Conclusions: a concept to thrombectomy, that supposes different methods of use of stent-retrievers and aspiration demonstrates better functional outcomes in treatment of ischemic stroke in the acute phase compared with intravenous thrombolysis. Embolic complications of reperfusion treatment adversely affect ischemic stroke outcomes and should be considered as a factor requiring minimization.

 

References

1.     Domashenko MA, Maksimova MY, Gafarova ME et al. The personification of reperfusion therapy approaches for ischemic stroke. Annals of Clinical and Experimental Neurology. 2017;11(1):7-13 [In Russ].

2.     Powers W, Rabinstein A, Ackerson T et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018; 49(3):e46-e99.

https://doi.org/10.1161/STR.0000000000000158

3.     Sandercock P, Wardlaw JM, Lindley RI et al.; IST-3 collaborative group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. The Lancet. 2012;379(9834):2352-2363.

https://doi.org/10.1016/S0140-6736(12)60768-5

4.     Riedel C, Zimmermann P, Jensen-Kondering U et al. The Importance of Size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42(6):1775-1777.

https://doi.org/10.1161/STROKEAHA.110.609693

5.     Kharitonova T, Ahmed N, Thoren M et al. Hyperdense Middle Cerebral Artery Sign on Admission CT Scan – Prognostic Significance for Ischaemic Stroke Patients Treated with Intravenous Thrombolysis in the Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Register. Cerebrovascular Diseases. 2008;27(1): 51-59.

https://doi.org/10.1159/000172634

6.     Thomalla G, Kruetzelmann A, Siemonsen S et al. Clinical and Tissue Response to Intravenous Thrombolysis in Tandem Internal Carotid Artery/Middle Cerebral Artery Occlusion. Stroke. 2008;39(5):1616-1618.

https://doi.org/10.1161/STROKEAHA.107.504951

7.     Turc G, Bhogal P, Fischer U et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. Journal of NeuroInterventional Surgery. 2019;11(6):535-538.

https://doi.org/10.1136/neurintsurg-2018-014568

8.     Fransen P, Berkhemer O, Lingsma H et al. Time to Reperfusion and Treatment Effect for Acute Ischemic Stroke: A Randomized Clinical Trial. JAMA Neurology. 2016;73(2):190-196.

https://doi.org/10.1001/jamaneurol.2015.3886

9.     Goyal M, Demchuk A, Menon B et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. New England Journal of Medicine. 2015;372(11): 1019-1030.

https://doi.org/10.1056/NEJMoa1414905

10.   Campbell B, Mitchell P, Kleinig T et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. New England Journal of Medicine. 2015;372(11): 1009-1018.

https://doi.org/10.1056/NEJMoa1414792

11.   Bracard S, Ducrocq X, Mas J et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. The Lancet Neurology. 2016;15(11):1138-1147.

https://doi.org/10.1016/S1474-4422(16)30177-6

12.   Jovin T, Chamorro A, Cobo E et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. New England Journal of Medicine. 2015;372(24):2296-2306.

https://doi.org/10.1056/NEJMoa1503780

13.   Muir K, Ford G, Messow C et al. Endovascular therapy for acute ischaemic stroke: the Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. 2016;88(1):38-44.

https://doi.org/10.1136/jnnp-2016-314117

14.   Saver J, Goyal M, Bonafe A et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. New England Journal of Medicine. 2015;372(24):2285-2295.

https://doi.org/10.1056/NEJMoa1415061

15.   McCarthy D, Diaz A, Sheinberg D et al. Long-Term Outcomes of Mechanical Thrombectomy for Stroke: A Meta-Analysis. The Scientific World Journal. 2019; 2019:1-9.

https://doi.org/10.1155/2019/7403104

16.   Logvinenko RL, Domashenko MA, Frantsevich AM et al. Choice of reperfusion strategy in acute period of ischemic stroke. Journal Diagnostic & interventional radiology. 2018;12(2):77-84 [In Russ].

17.   Semitko SP, Analeev AI, Azarov AV et al. Results of primary endovascular treatment of patients with acute ischemic stroke and high risk or contraindication for thrombolytic therapy. Journal Diagnostic & interventional radiology. 2018;12(4):52-58. [In Russ]

18.   Kang D, Kim B, Heo J et al. Effect of balloon guide catheter utilization on contact aspiration thrombectomy. Journal of Neurosurgery. 2018;1-7.

https://doi.org/10.3171/2018.6.JNS181045

19.   Maegerlein C, Monch S, Boeckh-Behrens T et al. PROTECT: PRoximal balloon Occlusion TogEther with direCt Thrombus aspiration during stent retriever thrombectomy – evaluation of a double embolic protection approach in endovascular stroke treatment. Journal of NeuroInterventional Surgery. 2017;10(8):751-755.

https://doi.org/10.1136/neurintsurg-2017-013558

20.   Goto S, Ohshima T, Ishikawa K et al. A Stent-Retrieving into an Aspiration Catheter with Proximal Balloon (ASAP) Technique: A Technique of Mechanical Thrombectomy. World Neurosurgery. 2018;109:e468-e475.

https://doi.org/10.1016/j.wneu.2017.10.004

21.   Lee D, Sung J, Kim S et al. Effective use of balloon guide catheters in reducing incidence of mechanical thrombectomy related distal embolization. Acta Neurochirurgica. 2017;159(9):1671-1677.

https://doi.org/10.1007/s00701-017-3256-3

22.   Stampfl S, Pfaff J, Herweh C et al. Combined proximal balloon occlusion and distal aspiration: a new approach to prevent distal embolization during neurothrombectomy. Journal of NeuroInterventional Surgery. 2016;9(4):346-351.

https://doi.org/10.1136/neurintsurg-2015-012208

23.   Maus V, Behme D, Kabbasch C et al. Maximizing First-Pass Complete Reperfusion with SAVE. Clinical Neu-roradiology. 2017;28(3):327-338.

https://doi.org/10.1007/s00062-017-0566-z

24.   Jadhav A, Aghaebrahim A, Horev A et al. Stent Retriever-Mediated Manual Aspiration Thrombectomy for Acute Ischemic Stroke. Interventional Neurology. 2016;6(1-2):16-24.

https://doi.org/10.1159/000449321

25.   Patent RUS №2670193/ 18.10.18. Byul. №29. Logvinenko RL, Arablinskiy AV, Domashenko MA et al. The method of endovascular combined thrombectomy from cerebral arteries. [In Russ.] Available at (23.09.2019):

http://www1.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=1407&DocNum-ber=2670193&TypeFile=html

26.   Hwang Y, Kang D, Kim Y, Kim Y, Park S, Suh C. Outcome of forced-suction thrombectomy in acute intracranial internal carotid occlusion. J Neurointervent Surg. 2012;5(suppl 1):i81-i84.

https://doi.org/10.1136/neurintsurg-2012-010277

27.   Turk A, Spiotta A, Frei D, Mocco J, Baxter B, Siddiqui A et al. O-002 Initial Clinical Experience with the ADAPT technique: A Direct Aspiration first Pass Technique for Stroke Thrombectomy. J Neurointervent Surg. 2013;5(Suppl 2):A1.2-A1.

https://doi.org/10.1136/neurintsurg-2013-010870.2

28.   Volodukhin M.U. Roentengen-endovascular method of cerebral flow restoration in acute tandem occlusion of the internal carotid artery with embolism development in middle cerebral artery. Kazan medical journal. 2016;97(3): 457-460 [In Russ].

https://doi.org/10.17750/KMJ2016-457

29.   Geroulakos G, Ramaswami G, Nicolaides A et al. Characterization of symptomatic and asymptomatic carotid plaques using high-resolution real-time ultrasonography. British Journal of Surgery. 1993;80(10): 1274-1277.

https://doi.org/10.1002/bjs.1800801016

30.   Adams H, Bendixen B, Kappelle L et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35-41.

https://doi.org/10.1161/01.str.24.1.35

31.   Logvinenko RL, Kokov LS, Shabunin AV, Arablinskiy AlV, Tsurkan VA. Analysis of a modified method for combined removal of throbus from blood vessels of the brain in the treatment of acute ischemic stroke. REJR. 2020; 10 (1):159-177 [In Russ].

https://doi.org/10.21569/2222-7415-2020-10-1-159-177

32.   Chen C, Parsons M, Levi C, Spratt N, Miteff F, Lin L et al. Exploring the relationship between ischemic core volume and clinical outcomes after thrombectomy or thrombolysis. Neurology. 2019;93(3):e283-e292.

https://doi.org/10.1212/WNL.0000000000007768

33.   Southerland A, Johnston K. Considering hyperglycemia and thrombolysis in the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial. Annals of the New York Academy of Sciences. 2012;1268(1):72-78.

https://doi.org/10.1111/j.1749-6632.2012.06731.x

34.   Lansberg M, Thijs V, Bammer R, Kemp S, Wijman C, Marks M et al. Risk Factors of Symptomatic Intracerebral Hemorrhage After tPA Therapy for Acute Stroke. Stroke. 2007;38(8):2275-2278.

https://doi.org/10.1161/STROKEAHA.106.480475

 

Abstract:

Aim: was to perform a retrospective comparative analysis of clinical and angiographic results of primary endovascular treatment of ischemic stroke in patients who had contraindications for adjuvant thrombolytic therapy, and results of applying standard pharmaco-invasive (thrombolysis and thrombus extraction) treatment.

Material and methods: angiography was performed in 61 patients. The main criterion for the selection of patients for cerebral angiography according to MSCT-angiography, was a confirmed occlusion of a large intracranial vessel (the internal carotid artery or the middle cerebral artery at M1-2 segment). After MSCT-angiography, in the absence of contraindications, (STT) systemic throbolytic therapy (Alteplaza in the standard dose) was started and patients were sent to an endovascular operation, where selective angiography of the syndrome-responsive artery was performed, followed by an endovascular procedure, according to standard procedure. For endovascular treatment, Penumbra Reperfusion catheters - ACE 68 , were used in combination with 3MAX catheters, or stent-retrievers (Trevo, PRESET, ERIC). In a number of cases, the use of retrievers was supplemented with an assisting thrombus aspiration («Solumbra» method). The criterion for the effectiveness of endovascular treatment was the achievement of blood flow in the syndrome-responsible artery TICI 2b - 3. 6 patients with lesion of distal segments of middle cerebral artery (M3-4) or with no occlusion of large intracranial occlusion were excluded from the study.

Results: all 55 patients who received endovascular treatment, retrospectively were divided into two groups depending on the performance of adjuvant STT Group of combined treatment (STT and endovascular procedure (EVP)) included 24 patients; 31 patients were included in the primary EVP group.

Conclusions: basing on results of the study it can be supposed that primary endovascular treatment of ischemic stroke without thrombolysis can provide comparable efficacy and safety of treatment.

 

References

1.      Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010; 41:2254-2258.

2.      Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Dбvalos A. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemicstroke: a pooled analysis of the SWIFT and STAR studies. JAMA Neurol. 2017;74:268-274.

3.      Broeg-Morvay A, Mordasini P, Bernasconi C, Bьhlmann M, Pult F, Arnold M. Direct mechanical intervention versus combined intravenous and mechanical intervention in large artery anterior circulation stroke: a matched-pairs analysis. Stroke. 2016; 47:1037-1044.

4.      Bellwald S, Weber R, Dobrocky T, Nordmeyer H, et al Direct Mechanical Intervention Versus Bridging Therapy in Stroke Patients Eligible for Intravenous Thrombolysis: A Pooled Analysis of 2 Registries. Stroke. 2017 Nov 7.

5.      Merlino, G., Sponza, M., Petralia, B. et al. Short and long-term outcomes after combined intravenous thrombolysis and mechanical thrombectomy versus direct mechanical thrombectomy: a prospective single-center study. J Thromb Thrombolysis. 2017; 44: 203.

6.      Guedin P, Larcher A, Decroix JP, Labreuche J, Dreyfus JF, Evrard S. Prior IV thrombolysis facilitates mechanical thrombectomy in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2015; 24:952-957.

7.      Behme D, Kabbasch C, Kowoll A, Dorn F, Liebig T, Weber W, Mpotsaris A. Intravenous thrombolysis facilitates successful recanalization with stent-retriever mechanical thrombectomy in middle cerebral artery occlusions. J Stroke Cerebrovasc Dis. 2016; 25:954-959.

8.      Desilles JP, Loyau S, Syvannarath V, Gonzalez-Valcarcel J, Cantier M, Louedec L. Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke. 2015; 46:3241-3248.

9.      Kass-Hout T, Kass-Hout O, Mokin M, Thesier DM, Yashar P, Orion D. Is bridging with intravenous thrombolysis of any benefit in endovascular therapy for acute ischemic stroke? WorldNeurosurg. 2014; 82:e453-458.

  

Abstract:

Article presents the first successful experience of thrombolytic therapy in a patient with severe burns, complicated by pulmonary embolism. Article describes detailed analysis of tactics of treatment, with the help of foreign and domestic recommendtions. Analysis shows that in patient with burns in case of pulmonary embolism, thrombolytic therapy is a method of choice. 

 

References

1.     Trombojembolija legochnoj arterii. Kak lechit' i predotvrashhat' [Pulmonary embolism. How to treat and to prevent.] (Pod red. A.I. Kirienko, A.M. Chernjakovskogo, V.V. Andrijashkina). М.: MIA [MIA], 2015; 280 [In Russ].

2.     Konstantinides S.V., Torbicki A., Agnelli G. et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014; 35(43): 3033-3069, 3069a-3069k.

3.     Kearon C., Akl E.A., Comerota A.J. et al. Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American American College of Chest Physicians Evidence-Based Clinical Practice GuidelinesChest. 2012; 141 (2, Suppl): e419S- e494S.

4.     Rossijskie klinicheskie rekomendacii po diagnostike, lecheniju i profilaktike venoznyh trombojebolicheskih oslozhnenij. [Russian clinical recommendations on diagnostics, treatment and prophylaxis of venous thromboembolic complications.] Flebobgija. 2010; 1(2): 5-37 [In Russ].

5.     Bershtejn L.L. Trombojembolija legochnoj arterii: klinicheskie projavlenija i diagnostika v svete novyh rekomendacij Evropejskogo obshhestva kardiologov. [Pulmonary embolism: clinical presentation and diagnosis in the view of recommendations of the European Society of Cardiology] Kardiologija. 2015; 4: 111-119 [In Russ].

6.     Bershtejn L.L. Trombojembolija legochnoj arterii u pacienta so stabil'noj gemodinamikoj. [Pulmonary embolism in patients with stable hemodynamics]. Jeffektivnaja farmakoterapija. 2015; (24): 10-15 [In Russ].

7.     Charnaja M.A., Morozov Ju.A. Trombozy v klinicheskoj praktike. [Thrombosis in clinical practice]. М.: GJeOTAR-Media [GEOTAR Media], 2009; 224 [In Russ].

8.     Sibagatullin N.G., Zakirova I.A., Hatypov M.G. i dr. Ob jeffektivnosti tromboliticheskoj terapii pri lechenii trombojembolii legochnoj arterii v pozdnie sroki. [The effectiveness of thrombolytic therapy in the treatment of pulmonary embolism in later stages]. Kreativnaja onkologija i hirurgija. Jelektronnyj nauchno-prakticheskij zhurnal. 2013; 3: URL: http://eoncosurg.com/ob-effektivnosti-tromboliticheskojt [In Russ].

9.     Kurakina E.A. Sravnenie jeffektivnosti tromboliticheskoj i antikoaguljantnoj terapii geparinom pri trombojembolii legochnoj arterii promezhutochnogo riska. [Effectiveness of thrombolytic and anticoagulant therapy with in comparison with heparin in pulmonary embolism of intermediate risk]. Fundamental'nye issledovanija. 2012; 4(1): 69-731[In Russ].

10.   Kungurcev E.V., Mihajlov I.P., Kosolapov D.A. i dr. Sravnitel'nyj analiz lechenija bol'nyh s trombozami glubokih ven nizhnih konechnostej, oslozhnivshihsja TJeLA. Geparin ili trombolizis? [A comparative analysis of the treatment of patients with deep venous thrombosis of lower limbs, complicated by pulmonary embolism. Heparin or thrombolysis?]. Zhurnal im. N.V. Sklifosovskogo. Neotlozhnaja medicinskaja pomoshh'. 2012; 3: 25-28 [In Russ].

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы